MATHEMATICAL STATISTICS
Mathematical statistics is the application of mathematics to statistics, which was originally conceived as the science of the state — the collection and analysis of facts about a country: its economy, land, military, population, and so forth. Mathematical techniques which are used for this include mathematical analysis, linear algebra, stochastic analysis, differential equations, and measure-theoretic probability theory.
Mathematical statistics is the application of mathematics to statistics, which was originally conceived as the science of the state — the collection and analysis of facts about a country: its economy, land, military, population, and so forth. Mathematical techniques which are used for this include mathematical analysis, linear algebra, stochastic analysis, differential equations, and measure-theoretic probability theory.
Probability distributions
A probability distribution assigns a probability to each measurable subset of the possible outcomes of a random experiment,survey, or procedure of statistical inference. Examples are found in experiments whose sample space is non-numerical, where the distribution would be a categorical distribution; experiments whose sample space is encoded by discrete random variables, where the distribution can be specified by a probability mass function; and experiments with sample spaces encoded by continuous random variables, where the distribution can be specified by a probability density function. More complex experiments, such as those involving stochastic processes defined in continuous time, may demand the use of more general probability measures.
A probability distribution can either be univariate or multivariate. A univariate distribution gives the probabilities of a singlerandom variable taking on various alternative values; a multivariate distribution (a joint probability distribution) gives the probabilities of a random vector—a set of two or more random variables—taking on various combinations of values. Important and commonly encountered univariate probability distributions include the binomial distribution, thehypergeometric distribution, and the normal distribution. The multivariate normal distribution is a commonly encountered multivariate distribution.
Special distributions
- Normal distribution (Gaussian distribution), the most common continuous distribution
- Bernoulli distribution, for the outcome of a single Bernoulli trial (e.g. success/failure, yes/no)
- Binomial distribution, for the number of "positive occurrences" (e.g. successes, yes votes, etc.) given a fixed total number of independent occurrences
- Negative binomial distribution, for binomial-type observations but where the quantity of interest is the number of failures before a given number of successes occurs
- Geometric distribution, for binomial-type observations but where the quantity of interest is the number of failures before the first success; a special c*Discrete uniform distribution, for a finite set of values (e.g. the outcome of a fair die)
- Continuous uniform distribution, for continuously distributed values
- Poisson distribution, for the number of occurrences of a Poisson-type event in a given period of time
- Exponential distribution, for the time before the next Poisson-type event occurs
- Gamma distribution, for the time before the next k Poisson-type events occur
- Chi-squared distribution, the distribution of a sum of squared standard normal variables; useful e.g. for inference regarding the sample variance of normally distributed samples (see chi-squared test)
- Student's t distribution, the distribution of the ratio of a standard normal variable and the square root of a scaled chi squared variable; useful for inference regarding the mean of normally distributed samples with unknown variance (seeStudent's t-test)
- Beta distribution, for a single probability (real number between 0 and 1); conjugate to the Bernoulli distribution andbinomial distribution
No comments:
Post a Comment